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The stability of viscous flow between eccentric cylinders is analysed for the case 
in which the inner cylinder rotates while the outer cylinder remains stationary, 
and where the difference in radii of the cylinders is small in comparison with 
their mean radius. The linearised equations governing the marginal stability 
of axially periodic disturbances are derived in general for the case where the 
Cylinders are infinitely long, and are solved approximately to give estimates of 
the critical Taylor number at which vortex flow occurs for a range of relative 
eccentricity of the cylinders. 

The results give an upper bound to the stability boundary, and certain results 
of DiPrima are used to establish a lower bound, and consequently the stability 
boundary is well established for eccentricity ratios less than about 0.6. One im- 
portant conclusion is that for a considerable range of eccentricity ratio the flow 
is less stable than when the cylinders are concentric. 

1. Introduction 
The stability of viscous flow between rotating cylinders was first analysed in 

detail by Taylor (1923) for the case where the cylinders are concentric and where 
the gap between them is small compared to their mean radius. Since then numer- 
ous authors, including Pellew & Southwell (1940), Chandrasekhar (1954) and 
DiPrima (1955) have published more refined solutions of the eigenvalue problem. 
For large relative gap widths the problem has received attention from Chan- 
drasekhar (1958), Chandrasekhar & Elbert (1962) and from Sparrow, Munro 
& Jonsson (1964). The effects of the superposition of a circumferential pressure 
gradient in the annulus have been examined by DiPrima (1959). 

For eccentric cylinders, however, very few references are to be found in the 
literature. Cole (1957) and Kamal (1966) have published a few experimental 
results, and DiPrima (1963) has considered the problem theoretically, assuming 
local stability by comparison with concentric theory with circumferential pres- 
sure gradients. The main difficulty arising in the eccentric problem is of course 
that the fluid motion must be considered in three dimensions, in contrast with 
the concentric case which is axisymmetric. 

The intention of this paper is to derive the marginal stability problem in a 
co-ordinate system suitable for eccentric rotating cylinders, and to present 
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approximate solutions of the resulting eigenvalue problem in the restricted, but 
important case of a very small clearance ratio. 

2. Co-ordinate system and equations of motion 

continuity equations can be expressed in the following vector form: 
For steady flow of an incompressible, isoviscous fluid, the Navier-Stokes and 

& V ( q . q )  + (V x 9) x q = - ( l /p)Vp+ v{V(V.q)-V x v x q}, 

v.q = 0, 

where q, p ,  p and v are respectively the velocity vector, pressure, density and 
kinematic viscosity of the fluid. 

(1) 

(2) 

FIGURE 1. The bipolar co-ordinate system. Clearance ratio, I) = 0.25; eccentricity ratio, 
6 = 0.42. 

The general orthogonal co-ordinate system for the geometry of eccentric 
paraxial cylinders is a cylindrical bipolar system. I n  such a system a pair of 
parallel eccentric cylinders, with arbitrary clearance and eccentricity ratios, is 
represented by two discrete values of one of the co-ordinakes (see figure 1). The 
system (a, p, x )  used in the following analysis has the additional advantage that 
the Lam6 coefficients h, and h, are equal at  each point. 

The transformation from Cartesian co-ordinates (x, y, z)  to the cylindrical 
bi-polar system (a, p, z )  is given by 

- a sinh a 
cosh a - cosp’ 

a sinp 
x = 2. (3) X =  

= cosh a - cosp’ 
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The Lam6 coefficients are found to be (h,  h, 1) where 

a 
h= 

cash - COSP’ (4) 

where, referring to figure 1, a is the length from the Cartesian origin 0 to the pole 
P of the bipolar system. 

If the inner cylinder, radius R,, and the outer cylinder, radius R,, correspond 
to a = a, and a = a, respectively, and the clearance and eccentricity ratios are 
denoted by I++ and 8 respectively, it may be shown that 

-a  -a  R --. 
I - sinha,’ - sinha,’ 

R -- 

R, - R, G sinh - - 

sinh a, - sinh a, 
sinh (a, - a,) 

c -  

I + + = T - K  - 

OB - OA - & =  

( 5 )  

In  this co-ordinate system, if ( U ,  V, W )  are the velocity components and P 
denotes the pressure, the equations of motion (1) and (2) are 

UaU VaU aU V2sinha UVsinp 1 aP -_ +--+w-+ - = 
ph aa h aa h ap ax U U 

1 a2U a2U (cosha+cosp)U 
ah 

3. The linear stability problem 
In  order to carry out a linearized stability analysis of flow between eccentric 

rotating cylinders, an explicit laminar solution for the flow must be available. 
This is a matter of some difficulty, and it is clear that a two-dimensional laminar 
flow, implying no axial variations, must be considered. At this stage it is assumed 
that such a solution (U’,  V’, 0‘, P‘) is available and the linear stability problem 
is formulated, the problem of determining the laminar flow being considered 
later in 0 5. 

The equations of marginal stability are obtained from ( 6 ) ,  (7) by perturbing 
the laminar flow (U‘, V’, 0, P’) with an infinitesimal axially periodic disturbance, 
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subtracting out the equations satisfied by the laminar flow, and retaining only 
linear terms in the disturbance velocity components. The perturbed motion is 
therefore taken as 

(8) 
u = U’+u’coshx, v = V’+ v’coshz; 

W = w‘sinhx, P = P’+pfcoshz; 

where u’, v’, w’ andp‘ are independent of x (as are U‘,  V‘ and PI), and h is some 
unknown axial wave-number. 

The resulting equations, defining the exact linear stability problem, are 

V’ au’ v‘ a U‘ 2 V‘v’ sinh a ( U’v’ + V’u’) sin p 
- - ~- l a  

h aa h ap h a/3 a a 
-- (U’u’)+--+--+ 

1 apf  1 a Z u l  1 a2u’ 
+ y - - + - - -  A2 

ph aa (h2 aa2 h2 ( +  uh 
- 

(9 a )  
uf avi u~ av’ 1 a (U’v’+ V’u’)sinhu 2U’u’sinp 
- __ + ~ +-- (Vfv’) -. ______-- + 
h am h aa hap a a 

s apt { 1 a w  1 a w  
- - -_-- A2+-- .___--  

ph ap m a 2  ah ( + y - - - - +  

( 9 b )  

(9.5) 
ufaw~ v f a w i  hpl 
h aa h a,!? p 
-- - +- - = -+ y 

s a  l a  
-- - (Izu‘) + - -- (hv’) + Aw’ = 0. 
h2 aa h2 ap 

The boundary conditions are 

u’ = v’ = w‘ = 0 for a = a1 and a = a2, 
u’, v’, w‘ andp’ are periodic in p. I (11)  

As with the concentric (Taylor vortex) case considerable simplification of the 
problem will result if the clearance ratio is small compared to unity. Further- 
more, it will be seen that only if this condition is enforced does a relatively simple 
form for the laminar flow become available. 

In  the following section the framework of the small gap analysis is set up and 
the linear stability problem is non-dimensionalized into the required small-gap 
form. 

4. Small gap analysis 
If + < 1 it seems reasonable to suppose that a term of O(+) may safely be 

neglected in comparison with a similar term of O( l) ,  and using this criterion the 

1 
cosh a1 2: cosh a2 2: - , 

sinh (a1 - a,) N (a1 - a,) N - +( 1 - @)3: 

€ 
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R2( 1 - e2)* R2( 1 - s2)* 
U E !  ; h2: 

€ 1 -scosp 

and hence, in this approximation, h is independent of a. 
A more convenient small parameter t than $ is defined by 

t = -(a1-a2) = $(1-€2)fr (14) 

so that t is a positive number of O($). 

ders may now be defined by: 

so that the inner and outer cylinders are now parametrized by 6 = 0 and 6 = 1 
respectively. 

The object of using this scaled co-ordinate 6 is that orders of magnitude of 
terms may be readily computed as powers of the small parameter t ,  and that 
terms can be retained or rejected according to the criterion that a term of O(t)  is 
negligible compared to a similar term of O( 1). 

It is necessary at  this stage to derive one important result concerning the 
relative magnitudes of the laminar velocity components (U ' ,  V ' ) .  In  the co- 
ordinate system (6, p)  the equation of continuity (7 )  for the two-dimensional flow 

A scaled co-ordinate 5 measuring distance across the gap between the cylin- 

a = a l + g  (15)  

is haU' a +- (hV')  = 0 tTg ap 
and it can be deduced that, if V' is of O(1) then U' is of O(t ) .  

In  deriving the linear stability problem in small gap form it is convenient to 
use non-dimensional variables defined as follows, where V, is the velocity of the 
inner cylinder : 

u' =qu, v' = Q V ,  w f  = qw, U' = tv,u, V' = V,V, (17) 

h = k/c ,  h = R2H,  R = VoC/v, p' = pV:p, P' = pV: P. ( 1 8 )  

Equations (9), ( l o ) ,  expressed in small gap form, now become 

aP ( g2 - k2H2( 1 - €2) u = R H (  1 - €2)* - 1 a6 

a2 k2H2(1-e2) w = -RH2k( l -e2)p+R$H(1-e2)  

1 au 
H (  1 - @)a a[ -+kw = 0. --_- 

I 
p and w can be eliminated from this set of equations to give 

aV ($ - k2H2( 1 - €2) v = R H (  1 - ~ 2 ) t  - u, I 86 
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k2H2(1-@) 2u = 2kZR$(l - E ~ ) ~ H ~  (p- 

(21b) 
Equations (21 a) and (21 b) define the linear stability problem for flow between 

eccentric rotating cylinders in the small gap case. The boundary conditions on 
u and w are deduced from (1 1) and (20) 

aU 
u = - = v = O  for g = O  and <=  1, 

a< 
u and w are periodic in p. 

5. The laminar solution 
The problem of laminar flow between eccentric cylinders for the case where the 

inner rotates and the outer is stationary has been considered by Kamal (1966), 
using the same bipolar system as is used here. The method adopted was to ob- 
tain, first, a solution where the non-linear inertia terms are neglected, which in 
the general case reduces to solving the biharmonic equation for a stream function, 
and subsequently to estimate an inertia correction by iterating from this stream 
function using the full non-linear equations. 

A similar procedure is used here using the small gap form of the equations of 
motion, which eliminates the necessity of using the stream function. Using the 
non-dimensional form (17), (18), the equations of motion reduce to 

aP 
- = 0,  ac 

If the outer cylinder is stationary the boundary conditions are 

} (24) 
U = O  for C = O , l ,  V = l  for g = O ,  V = O  for t;=l, 

U ,  V ,  P are periodic in p. 

Since (23b) is non-linear in U and V a solution of (23) subject to (24) is unob- 
tainable in closed analytic form. However, if the effect of these non-linear terms 
is sufficiently small a good approximation to the exact solution will be obtained 
with the following procedure. The solution is expressed as the sum of two parts, 
i.e. U = Q+ U,, V = K+%, P = Pl+ P, where U,, V, and P, satisfy (23), wherein 
the non-linear terms are neglected, together with the boundary conditions (24), 
and where U,, V, and P2 satisfy (23) with the non-linear terms calculated using the 
known functions U,, V, (instead of U, V ) ,  together with zero velocity boundary 
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conditions. On adoption of this procedure the following relevant variables can 

be derived : 1 aH 
H aP u,= ---<(1-<)2, ( 2 5 4  

where 

V, = (l-c)(l-+$)), 

(1 - €2)) 

1 + *€2 ' 
H*=- 

V, = -R$(l-~2)--  aH (' - 52) (2  - 3Hn) { 6( 1 - H,,) ap 420 

+ 21c(1+ H0)-7c2(17 - 3H0) + 42c3(3 - 2 4 )  - 42c4(1 - Ho)}, (27) 

where Ho = H"/H. 
In  order to estimate the magnitude of the inertia correction velocity com- 

ponent V, it is necessary to assign a numerical value to RI,h. It is known (e.g. 
Chandrasekhar 1954) that at marginal stability for the concentric small gap case 
(outer cylinder stationary), the value of R2$ is 1695, whereas the exact calcula- 
tion by Sparrow, Munro & Jonsson where the radius ratio RJR, = 0-95 (i.e. 
I,h = 1/20) indicates that R2$ = 1801. Hence, for $ = 1/20, the small gap 
approximation leads to an error of some 6 yo in the determination of the critical 
Taylor number. For this clearance ratio a representative value for RI,h near the 
expected critical Reynolds number will be R $ e  10, and using this value it may 
be calculated from equation (27) thak the maximum values of V, range from 
N 113 % of the velocity of the inner cylinder for e = 0.1 up to N 5 % for e = 0.9. 
Hence it may confidently be expected that the iteration method adopted to de- 
termine V2 from equations (23) yields an accurate inertia correction. More 
important, however, it seems a reasonable conclusion that the omission of the 
inertia correction invokes errors no more serious than those resulting from the 
normal small gap analysis. It is therefore, assumed that in the following analysis, 
the laminar flow ( U ,  V )  is given to sufficient accuracy by (U1, V,) as defined in 
(25), (26). 

6. The polar form of the linear stability problem 
Returning to the linear stabilityproblem as defined by (21), (22) it  is convenient 

to transform the equations to a new angular co-ordinate q5, the polar angle based 
on the centre of the stationary cylinder, q5 = 0 corresponding to /3 = 0 

q5 = J P H d P ,  n 

from which may be deduced 

a a l + € C O S q 5  

aP a$ (1-€2)4 * 

- = H-, H = 

The linear stability problem in polar form is therefore 

av 
ac {& - 1 - €2) w = BH( 1 - c2)* - u, 
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i a  v a  
2H 34 

{$ - @H2( 1 - €2) 2u = 2k2R@( 1 - s2)2B4 ( Uu) - - - (Hu) 

1 

The boundary conditions are 

u, v are periodic in 4. U and V are given by: 

where 

V = ( 1 - < ) ( 1 - 3 C ( l - g ) ] ,  

7. Approximate solution of the equations 
The pair of equations (29) subject t o  the boundary conditions (30) constitutes 

an extremely complicated eigenvalue problem with two dependent variables 
u and v, and two independent variables Sand 43. For given B, k and $the equations 
admit solutions only for certain discrete values of the eigenvalue R, and the 
minimum value R, as k varies gives the stability boundary at each value of c and 

Without further simplification it appears uneconomic to attempt a general 
solution of the problem. However, since the problem is already confined to the 
small gap, an appeal to certain results from concentric theory indicates that con- 
siderable simplification might still be made without too great a loss in accuracy. 

For the concentric small gap case, Chandrasekhar (1954) quotes results from 
which the relative magnitudes of u and v may be determined. For < = &, i.e. 
midway between the cylinders, it can be calculated that 

@* 

and for clearance ratios less than $ = & it can be deduced that 

It seems reasonable to assume that this will also be true in the eccentric case, 
at least for small eccentricity ratios, and hence if u is redefined as Ru and a 
Taylor number T is defined by T = 2R2@ equations ( 2 9 )  may be written 

av 
a< 

(5 - PH2( 1 - B ~ ) } v  = H( 1 - e2)6 - u, 
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where F is a complicated differential function of u, v, U ,  V ,  R, 5 and q5 but whose 
numerical magnitude is expected to be small. The approximate solution ob- 
tained in this paper proceeds on the assumption that F is negligible in comparison 
to  unity. A complete justification of this assumption and an estimate of the error 
involved will obviously require the solution of the complete form of the equations. 
It might be noted, however, that, the neglected terms are somewhat similar in 
nature (i.e. convective accelerations) to the non-linear terms in the equations for 
the laminar flow ( $ 5 )  where despike the considerable magnitude of the coeffi- 
cients of the terms, their effect on the viscous solutions was negligible. 

When the function F is omitted from ( 3 2  b )  it  will be observed that there are 
now no circumferential differential terms in the equations and it would be pos- 
sible t o  solve the equations regarding # as a variable parameter so that the result- 
ant eigenvalues would be functions of angular position. This was the basis of the 
calculations by DiPrima (1963). However, it may be observed experimentally 
that local instability does not occur and that vortex flow appears instantaneously 
in the whole circumferential gap between the cylinders. For this reason, and also 
because it would certainly be necessary if F was retained, q5 is regarded as an 
independent variable in the eigenfunctions of the problem. 

The method of approximate solution used in this work is an adaption of 
Galerkin’s method which was used by DiPrima (1961) on a somewhat similar 
pair of equations resulting from a consideration of the stability of flow between 
concentric cylinders when disturbances are not restricted to be two-dimensional. 

For the present problem it is supposed that u and u are expanded into series 
sums of functions having the following properties: (i) each set of functions, i.e. 
one each for u and u is complete in the region of the (5, #)-plane in which the 
solution is to be valid; (ii) each of the functions satisfies the boundary conditions 
of the velocity components of which it is part; (iii) each function is multiplied by 
an arbitrary amplitude coefficient. 

If all these conditions hold then it is reasonable to expect that it is possible to 
represent the solution in the form prescribed, with the values of the coefficients 
determined in some manner. The Galerkin method provides the process whereby 
these coefficients are found. The procedure involves making the error in each 
equation orthogonal in the (c, $)region to each component function of the velocity 
being determined. I n  this problem the first equation is regarded as a differential 
equation to determine v with u as a known function and the second as an equation 
to determine u with v as the known function. This results in an infinite set of 
homogenous linear equations in the coefficients, the condition for the existence 
of a non-trivial solution being the vanishing of an infinite order determinant 
involving the eigenvalue T, and the parameters e and Ic. In  practice the series 
representations for u and v are limited to the first few terms, thereby reducing the 
order of the determinantal equation. It seems clear that this procedure can be 
used to give successive upper bounds to the eigenvalue, since the number of 
arbitrary constants in the series influences the ability of the series t o  conform t o  
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the true eigenfunctions, the more constants being free, the better the conformity. 
This conclusion is borne out by the results obtained. 

If n-term series are used to represent u and v, the determinantal equation is a 
polynomial in T of order n whose coefficients are functions of s and k. The results 
of this paper were obtained using a KDFS computer, using an Algol program 
to do the following: (i) choose a value of s ;  (ii) choose a suitable range of values of 
k ;  (iii) for each k determine the numerical values of the coefficients of the poly- 
nomial in T; (iv) determine the minimum positive root T of the polynomial 
equations; (v) estimate To and ko, the minimum value of T and the corresponding 
vaIue of k. 

It wiIl be noted that each term in the operations of each equation is symmetric 
about $ = 0, which implies that antisymmetric and symmetric solutions are 
completely independent, and that the corresponding eigenvalues can be separ- 
ately determined. The results of this paper were obtained by using five sym- 
metric and two antisymmetric representations for u and u. They are: 

(a)  u = A,(5-52)2, 

u = w 5 -  C2); 
( b )  = [Al+A2(1-25)1(9-52)2, 

v = [B, + B2( 1 - 201 (9 - 57;  
(c) u = [ A , + A , ( ~ + E C O S $ ) ] ( < - ~ ~ ) ~ ,  

2, = [B, +B3( 1 + € cos $)] (5  - 5 2 ) ;  

( d )  u = [ A ,  +A2(1 - 25) +A# +scos$)] (5- 52)2, 

= [B, + B2( 1 - 29) +B3( 1 + € cos $)] (5- 52); 

( e )  u = [A,  + A,( 1 - 25)  + [A3 + A4( 1 - 25)]  (1 + s cos $)] (5-  92)2, 

(f) u = clsin$(c-62)2, 

(9)  u. = rc, $- CZ(1 - 2!31 sin 9 (5- C2P,  

2) = [B, + B,( 1 - 25) + [B3 +B4( 1 - 25)]  (1 + € cos $)] (9- 52) ;  

v = Dlsin$(g-C2); 

zi = [Dl + D,( 1 - 25)] sin $([- 5”). 
These series are all of the form: 

u = (5-52)2 X Am@n(C, $ 1 7  

n 

= (5- 5’) 2 Bn an(<, $1, 
n 

so that the boundary conditions are satisfied regardless of the an. The sequence 
in Cis extended by simple polynomial expressions and that in q5 by trigonometric 
expressions, both chosen to make the integration involved in the orthogonaliza- 
tion process as simple as possible without any loss in generality. 

The eigenvalues, To and corresponding wave numbers, k, arising from each 
representation (a)  to (9)  for u and u are summarized in the following table: 
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6 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

a b C d 
& r-----h--? -7 

k0 TO ko TO k0 TO k0 TO 
3.117 3,499.9 3.128 3,474.9 3.117 3,499.9 3.128 3,474.9 
3.103 3,561.7 3.116 3,524.2 2.912 3,190.6 2.922 3,150.2 
3.060 3,763.9 3.086 3,681.2 2.728 3,068-7 2.746 2,986.9 
2.995 4,168.4 3.041 3,977.2 2.541 3,143.7 2-596 2,990-5 
2-912 4,932.3 2.995 4,478.8 2.409 3,503.1 2473 3,200.7 
2.820 6,505.8 2.971 5,332.1 2.259 4,441.5 2.388 3,756.7 
2.722 10,784 3.014 6,880.8 2.120 7,410.3 2-395 5,108.3 
2.623 49,313 3.246 10,030 -5  N 38,000 2.836 8,921.9 
- - - 3.73 - 17,200 - - 3.957 17,171 
- - - - - - -4.9 -35,000 

e f 9 
(-.---.-h-, r--h-- -7- 

0.0 3.128 3,474.9 3.117 3,499.9 3.127 3,474.9 
0.1 2.931 3,110.8 3.110 3,566.3 3.122 3,529.6 
0.2 2.763 2,906.9 3.088 3,780 3.108 3,702.3 
0.3 2.626 2,843.6 3.052 4,197.7 3.091 4,022.2 
0.4 2.515 2,932.0 3.007 4,952.8 3.076 4,554.0 
0.5 2.446 3,228.3 2.951 6,407.6 3.077 5,438.7 
0.6 2-446 3,892.6 2.890 9,864.1 3.127 7,013-4 
0.7 2.695 5,379.7 2.823 25,883 3.323 10,228 
0.8 3.091 9,017.2 - - -3.8 -18,000 
0.9 -4.0 -19,900 - - - 5  - 50,000 

8 k0 TO k0 TO k0 TO 

8. Discussion 
As was mentioned previously, due to the symmetry in q5 of the equations of the 

simplified eigenvalue problem, i.e. when the function F is neglected in equation 
(32 b) ,  symmetric and antisymmetric eigenfunctions exist completely inde- 
pendently, with corresponding independent eigenvalues. The marginal stability 
problem, however, is concerned with finding the minimum of the eigenvalue T 
a t  which an infinitesimal disturbance can exist. By comparing the eigenvalues 
from the symmetric forms (a)  and (b)  with those from the antisymmetric forms 
(f) and (9 )  it will be noted that the former are invariably the smaller for each 
eccentricity ratio, except at higher values of B, where considering the simple 
trial representations used, the results are likely to be inaccurate. It can be im- 
plied therefore, that at  marginal stability only symmetric disturbances will 
exist. This deduction is confirmed to some extent by the work of DiPrima (1963) 
who showed that the local clearance and pressure gradients have symmetric 
effects. It should be noted that if the function F ,  the terms of which may be shown 
to be antisymmetric, were to be included in the equation, then both types of 
disturbance would probably occur at marginal stability, although it appears that 
the antisymmetric part might be relatively unimportant. Clearly solutions of the 
problem when P is retained would be of great interest, but the problem then is 
extremely complex, and in fact, due to the way in which €2 and @ appear, no 
Taylor number can be defined unless @ is left as a variable parameter. 
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In figure 2 are plotted the critical Taylor numbers for each of the five sym- 
metric cases (a )  to ( e ) ,  as functions of the eccentricity ratio. Each curve represents 
an estimate of the critical Taylor number at  which a disturbance of a prescribed 

4 

"0  0.2 0.4 0.6 0.8 1 .o 

Eccentricity ratio 

FIGURE 2. Variation of critical Taylor number with eccentricity ratio. 

form can exist in a state of marginal stability. As more terms are added to the 
series representations for u and v, the resulting curves will tend to some limiting 
curve which is the true stability boundary of the problem under consideration. 
The curve ( e )  therefore, resulting from the solution of numerous 8 x 8 determin- 
ants, is the best estimate of the stability boundary which has been obtained using 
the method of this paper. Better estimates could, of course, be obtained by ex- 
tending the series, but this would result in an increased order (and number) of 
determinants to be solved and a consequent prohibitive increase in the volume 
of calculation, particularly when it is recalled that the problem being considered 
is already approximate. However, it is considered that the curve ( e )  may always 
be regarded as an upper bound to the stability boundary of the simplified eigen- 
value problem considered, i.e. that where P is neglected. Furthermore, it seems 
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that it will also be an upper bound for the ‘exact’ small gap problem (29), (30) 
since, if the disturbance is constrained to be symmetric in 4, the antisymmetric 
terms comprising F do not influence the eigenvalue when Galerkin’s method is 
used. 

A sixth curve is plotted in figure 2, resulting from the work of DiPrima (1963). 
These results were obtained by estimating the critical Taylor number at  the least 
stable position in a local sense, invariably 4 = 0, basing the calculation on the 
equivalent flow between concentric cylinders, using the local values of clearance 
and circumferential pressure gradient appropriate to the flow between eccentric 
cylinders. DiPrima concludes that this curve must represent the limit below 
which the flow is certain to be stable, and may therefore be considered as a strict 
lower bound for the stability boundary of the problem of this paper. 

With the establishment of these upper and lower bounds, the position of the 
stability boundary seems fairly well defined for eccentricity ratios up to 0.6. In  
most of this range it will be noted that the critical Taylor number is smaller than 
that for e = 0, implying that for a considerable range of eccentricity ratio the 
flow is less stable than that between concentric cylinders. Until recently, experi- 
mental evidence regarding a destabilizing effect of eccentricity was somewhat 
inconclusive. The results of Cole, who used a suspension of fine aluminium par- 
ticles as a flow visualization technique, indicate a decrease of stability at  small 
eccentricities but a progressive increase beyond E N 0.2. Kamal’s results, using 
a similar technique show no destability and a progressive increase in stability 
with e. Some recent experimental work by Castle & Mobbs (1967) however, 
throws some light on the discrepancy between the theory of this paper and the 
earlier experimental work. Using an apparatus in which dye was injected into the 
fluid through small orifices in the rotating inner cylinder, it was shown that a 
destabilizing effect of eccentricity did occur, although the vortex flow apparently 
remained of very small circulation for Taylor numbers considerably in excess of 
the critical. The stability boundary observed in this manner is in reasonable 
agreement with the theoretical upper bound ( e )  of figure 2 .  Furthermore, in the 
same apparatus, when the aluminium suspension technique was used instead of 
the dye injection technique no instability was detectable until Taylor numbers 
nearer those determined by Cole and Kamal, indicating that the former technique 
is not sufficiently sensitive to observe the primary instability. 

In  conclusion, since the present work is apparently the first in which the three- 
dimensional nature of the vortex flow between eccentric cylinders has been con- 
sidered in a general manner, it appears worthwhile to discuss the approximations 
which have appeared necessary in tackling the problem. In the order in which 
they were introduced, the approximations are: (i) the small gap approximation; 
(ii) the neglect of the inertia terms in the laminar solution; (iii) the neglect of the 
antisymmetric terms in the eigenvalue problem; (iv) the use of Galerkin’s method 
in an eigenvalue problem with two dependent variables. 

The neglect of terms which are expected to be small in view of the small rela- 
tive clearance is a common first approximation in stability analyses of this nature. 
The error involved, for the concentric case, can be directly determined from the 
literature. For $ = 0.05, the error in the eigenvalue T is - 6 yo, while for $ = 0.25 
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the error is - 31 yo, indicating that the use of the small gap approximation yields 
results for the eigenvalue in error by O(11.T). 

The neglect of the inertia terms in the laminar solution, at first sight serious 
in view of the magnitude of R$, has been shown to yield errors probably smaller 
than those produced by the small gap approximation. 

The neglect of the antisymmetric terms in the eigenvalue problem is un- 
doubtedly the most serious approximation made, but one which it seemed neces- 
sary to make in order to obtain a solution of the problem. It has been justified 
to some extent for small eccentricity ratios and it is expected that the eigen- 
values predicted in this range will be reasonabIy accurate. At larger eccentricities 
the accuracy must remain in doubt until the solution of the full equations is 
accomplished. 

Finally, the use of the Galerkin method for the present eigenvalue problem is 
somewhat unorthodox. The author has been unable to prove analytically that its 
use in this case leads to a sequence of upper bounds for the eigenvalue as the 
approximate eigenfunctions are extended. However, the basis of the method, 
i.e. the relaxation of constraint on the eigenfunctions by increasing the number 
of free parameters, and the results obtained, both here and by DiPrima (1961), 
seem to indicate that such a minimizing sequence does occur. 

The author would like to thank Mr R. M. Bowman for many helpful discussions 
during the early stages of the analysis, Dr J. W. Midgley for his encouragement 
throughout, and is indebted to the Directors of the English Electric Company 
Limited, for permission to publish this work. 
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